
Pressurized water  reactor blockage  
prediction of laminar f low and 
temperature distributions following a 
loss of coolant accident 
P. W. Duck* and J. T. Turner1 
During the unlikely occurrence of a loss of coolant accident (LOCA) in a pressurized water 
reactor, it has been postulated that the fuel rod cladding may swell due to the combination 
of a pressure differential across the cladding and the increased temperature levels in the 
core. In this event, adjacent fuel rods may 'balloon' until they make contact with their 
neighbours, leading to a reduction in subchannel f low area, subchannels of highly 
noncircular cross-section, and worsening heat transfer in the blocked region of the core. A 
particularly important measure in predicting an upper limit on the severity of this core 
blockage is the peripheral variation of the wall temperature for a representative blocked 
subchannel. This paper is concerned with the prediction of the temperature variations in the 
duct wall and the fluid for ful ly developed laminar flow. A single subchannel is modelled as a 
four-cusped duct, bounded by a conducting wall of constant thickness, which is subject to 
uniform heat f lux from the fuel. Results for this idealized problem are presented for different 
values of the thickness and thermal conductivity of the cladding. The important wall 
temperature distributions have been calculated for superheated steam to cover fluid f low 
conditions which might be envisaged during a LOCA. Here it must be observed that two- 
phase f low effects are unlikely to lead to worse heat transfer than can be predicted for 
single-phase steam cooling. Thus, the predicted temperature variations represent an upper 
bound for the low Reynolds number end of the Reflood phase in the LOCA. 

Keywords: pressurized water reactor, loss of coolant accident, fully developed laminar 
fluid flow, cusped channel, heat transfer, fuel rod cladding 

Introduction 

The present investigation of laminar flow in a cusped channel 
and heat transfer through the boundary walls has its origin in a 
situation which might arise in the event of a loss of coolant 
accident (LOCA) in a pressurized water reactor (PWR). Here, 
the increased temperature levels in the core, together with the 
pressure difference between the helium 'fill gas' and the core 
coolant (superheated steam) may combine to cause swelling of 
the cladding on adjacent fuel rods. Moreover, it has been 
suggested that the cladding could swell to such an extent that 
adjacent rods make contact, leading to a reduction in 
subchannel flow area and a worsening of the core heat transfer 
in the region of the blockage. The idealized, 'singly-connected', 
subchannel geometry then resulting is the four-cusped duct 
shown in Fig 1. 

The effect of these local changes of shape is to produce 
additional resistance to the coolant flow and a redistribution of 
heat transfer around the boundaries of the fuel rods. 
Additionally, the circumferential strain associated with the 
ballooning may result in significant local changes in the 
thickness of the cladding, thereby leading to greater azimuthal 
variation in the wall temperature. The net result may be to 
produce circumferential gradients of temperature and local 'hot 
spots' near the lines of contact for each group of tubes. 

The determination of the fuel cladding temperature under 
these ballooned conditions is important if the safety 
implications are to be fully understood; this paper is intended as 
a contribution to the development of such an understanding. 
The problem is one of conjugate heat transfer by wall 
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conduction and forced convection to the fluid. The complex 
nature of this system necessitates an iterative numerical 
procedure. 

Initially ~, it appeared that the convection problem should be 
amenable to solution by a well-established finite difference 
procedure developed principally for the study of turbulent 
recirculating flow. Earlier 2, an analysis for the turbulent flow in 
the four-cusp channel geometry was presented, the emphasis 
then being on the modelling of turbulence in the vicinity of the 
boundary and the prediction of both the axial flow and the 
transverse secondary components. The heat transfer description 
was simplified by assuming a constant wall temperature around 
the periphery of the subchannel at any axial location with 
uniform heat input axially. 

In initial discussions of this problem, it became apparent that 
fixed wall temperature boundary conditions may conceal the 
importance of a peripherally varying heat transfer rate and the 
consequent temperature gradients in the circumferential 
direction. These gradients are believed to have a critical 
influence on the growth of the ballooned sections of the cladding 
since the areas for which the temperature levels are highest may 
either swell or burst dependent upon the prevailing conditions. 

Relevant studies have been performed by Shah and London 3, 
and by Eckert and Irvine 4. For  the case of fully developed 
laminar flow in noncircular ducts, Shah and London 3 collected 
information for flow and heat transfer in a variety of cross- 
sections. They also studied the influence of different heat transfer 
assumptions satisfying conditions of 

(i) uniform heat flux in the flow direction, combined with 
uniform wall temperatures at any cross-section; 

(ii) uniform axial and peripheral heat flux; 
(iii) uniform wall temperature. 

Eckert and Irvine 4 performed a comprehensive experimental 
study to determine the pressure drop and heat transfer in an 
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isosceles triangular duct. For the case of uniform heat 
generation in the wall of the duct, they also measured the wall 
temperature distribution in turbulent flow and were able to 
obtain the peripheral distribution of local heat transfer 
coefficient from these data. 

An interesting feature which results from these 
investigations 3'4 is the dependence of the mean Nusselt number 
on both the thermal boundary condition and the geometry of 
the cross-section. From Ref 3 it is clear that shapes with very 
sharp corners exhibit the smallest mean Nusselt numbers; thus 
it can be anticipated that a four-cusp duct will have 
characteristics in keeping with this observation. It is also to be 
borne in mind that the present analysis employs the more 
realistic convective boundary condition which results from the 
conjugate heat transfer problem. 

While this paper deals with laminar flow heat transfer, it is 
pertinent to mention the inadequacy of the equivalent-diameter 
concept in the prediction of turbulent flow and heat transfer in 
noncircular ducts 2. Again, the sharpness of any corners and 
their influence on the mean flow patterns must be recognized as 
contributing to this inadequacy. 

In the following sections, a theoretical model of the fully 
developed laminar flow situation is introduced. Computer 
predictions for the heat transfer properties and flow 
distributions in the wall and the fluid are then presented. 

Theoretical analysis 

Heat transfer model of the blocked subchannel 

In order to predict the surface temperature of a PWR fuel rod, 
the conjugate conduction and convection problem is modelled 
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Fuel rod assembly 4-cusp channel 

Figure 1 Origin of four-cusped channel in PWR blockage problem 
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as shown in Fig 2. The fluid is assumed to be in fully developed 
laminar flow through the channel and to satisfy symmetry along 
the side and corner bisectors AB and OB, respectively. 
However, although the condition of uniform heat flux is 
imposed at the fuel-cladding interface, azimuthal heat 
conduction in the assumed uniformly thick cladding implies 
that the boundary conditions for the forced convection heat 
transfer are those of constant total heat flux along the axial 
direction with peripherally varying heat flux at the cladding- 
coolant interface. The temperature T within the fluid must then 
satisfy an expression of the form 

T(r, O, z)=.['1 (r, O)+9(z) (I) 

This paper concentrates upon the solution for fl(r, O) since 
9(z) is a known linear function. The heat conduction is tacitly 
assumed to be one-dimensional, following the practice used in 
the analysis of fins. This theory is outlined in Appendix 1. It 
should be mentioned that circumferential variations in the wall 
thickness, as could be expected to occur during the ballooning 
process, could be easily accommodated by modifying the basic 
equations in the present model. 

Coordinate system and method of solution 

A schematic diagram of the four-cusped problem is shown in Fig 
1. Basically, what is required is the determination of the fluid 
velocity distribution in the channel, and the associated 
temperature fields in the fluid and the cladding. It is necessary to 
prescribe the geometrical and material properties of the heat 
flux at the fuel-cladding interface, and the axial pressure 
gradient. Since the temperature field (Eq (1)) is assumed to be 
fully developed, the temperature level of the fluid relative to the 
cusp remains constant for fixed values of (r, 0), irrespective of 
axial position. 

Uniform heat flux 
at fuel cladding ~ / /  

interface ~ J J1-Cadding 

Element ~ . ~  Fluid 

^ . . - ' t ' - ' ~ ~ ~ ,  ~V Variable heat flux at L, onouCI ion ~ f  iud/clodding interface 
Oi - _ 

Figure 2 Conjugate heat conduction and convection in the four- 
cusped channel 

Notation 

a 

b 
Cp 
d 
oo 
f 
A (r, o) 
g(z) 
h 
n(o) 
k 
L 
Nu 
P 
q 
r, O, Z 

R 

External radius of cladding 
Function in Eq (10) 
Specific heat of fluid 
Source term in Eq (10) 
Equivalent diameter of noncircular channel 
Friction factor = (Ap/½pu2)(De/4L) 
Temperature function-Eq (1) 
Temperature function--Eq (1) 
Heat transfer coefficient 
Scaling function (Appendix 3) 
Thermal conductivity 
Length of subchannel considered 
Nusselt number = hDe/k f 
Static pressure 
Heat flux 
Cylindrical coordinates (radial, circumferential, 
axial) 
Scaled radial coordinate in transformation--Eq (2) 
Dimensionless radial scale = r/a 

Re Reynolds number-priDe~ # 
s(O) Scaling function in transformation--Eq (2) 
t Thickness of cladding 
T Temperature 
u Velocity component in axial direction 
U Scaled velocity component in axial direction 
x Distance along cladding from cusp (Appendix 1) 
ct Thermal diffusivity - kf/pCp 
A Operator showing small change in value 
# Absolute viscosity 
p Fluid density 

Generalized dependent variable 
z Shear stress 

Subscripts 
i (Fuel/cladding) interface 
w (Flow/cladding) interface 

Pertaining to variable of 
b Bulk mean condition 
f Fluid 

- Overbar denotes (area weighted) mean 
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Appropriate boundary conditions must be imposed in the 
calculation of the fluid velocity and temperature distributions 
within the cladding and the fluid. Additionally, the velocity and 
temperature fields are considered to be symmetrical about both 
the side bisector AB and the corner bisector OB. 

In an early attempt at solution, a straightforward polar 
coordinate system (origin at the centre of one of the rods--  see 
Fig 2) was employed. The attraction of this scheme was that two 
(of the three) boundaries of the domain of integration lay along 
coordinate lines (OA and AB). Unfortunately, the third 
boundary, OB, was not so conveniently located, and the scheme 
proved numerically unreliable, probably due to the poor 
resolution in the vicinity of the cusp where there were few mesh 
points. 

These difficulties have been overcome by means of a 
modification to this scheme 5 which uses the same system of 
polar coordinates described above, but transformed so that all 
three boundaries of the integration domain lie along coordinate 
lines. At the same time, the new scheme gives a good mesh point 
distribution in the neighbourhood of the cusp. 

The idea behind this coordinate system is simple. Referring to 
Fig 3, it can be seen that scaling of the reduced radial coordinate 
( R -  1) by the function s(O), representing the distance at a given 
angular value 0 between the outer surface of the cladding and 
the cusp bisector OA, maps the flow domain onto a rectangular 
region. The appropriate transformation is 

R - 1  
= (2) 

s(O) 

where 

s(O) = sac 0 - 1 

This transformation maps the region inside OBA in the (r, 0) 
plane into the more convenient rectangular region defined by 
0~<0~<n/4, 0~<~<1 in the (~,0) plane, as shown in Fig 3. 
Consequently, simplification of the domain is achieved at the 
expense of a nonorthogonal coordinate system, with a 
subsequent complication in the governing equations. However, 
since a numerical solution is sought, this is of little concern. 
Special attention using this approach was required near the cusp 
where the cusp point 0 is mapped into the line 00'. Full details of 
the analysis have been given in Duck s, and a summary of the 
method appears in Appendix 3. 

Standard second-order central differencing was employed to 
approximate both the flow and energy equations, and the 
resulting algebraic equations were then written in tridiagonal 
form (along the lines of 0 = constant). The equations were solved 
using Gaussian elimination, coupled with a standard iterative 
procedure. 

The tolerance limit imposed on the iterative procedure was 
that the maximum change in any of the calculated quantities 
was no more than 10- lo, with a relaxation parameter of unity. 
(No optimization of this value was carried out.) Computing 
times on a CDC 7600 were typically of the order of 5 s, 50 s, 
675 s, for a 11 x 11, 21 x 21, 41 x 41 grid, respectively (although 
these timings were dependent upon the particular problem 
under consideration). 

~ , Wail: constant heat flux 
o.o:  o o='r', . . . . . . . . . . . .  Constant 

=o\'..,eo,... ,,uxl .ineof ...................................................................... 0 
[ \ ",,~ symmetry I Refer to [Line of 

~=lJ I (Eq(15)) 
7 ]  Line of symmetry ~"~ 

0 '~'/~'~Is t~l xh B "?~ (Eq (14)) 15 
0 Line of symmetry 

a b 
Figure 3 Coordinate system in original and transformed domains: 
(a) original polar coordinate scheme; (b) transformed domain 

One point worth noting is that the heat transfer solution was 
considerably slower to converge than the corresponding flow 
problem. It seems likely that this discrepancy arises became the 
heat transfer must satisfy entirely derivative boundary 
conditions for the temperature, whereas, in the velocity field 
problem, the fluid velocity is prescribed explicitly on the walls of 
the cross-section. 

Flow and heat transfer conditions 

The problem is one of determining the fluid velocity in the 
channel and then matching this to the temperature fields in the 
fluid and the cladding. It is necessary to prescribe the 
geometrical and material properties, the heat flux at the fuel- 
cladding interface, and the axial pressure gradient in the fluid. 
Since the temperature field is assumed to be fully developed, it 
can be expressed by Eq (1), implying as stated previously that 
the temperature levels of the fluid relative to the cusp remain 
constant for fixed values of (r, 0), irrespective of the axial 
position. 

The axial temperature gradient (dT/az), which acts as the 
source term for the temperature equation, equals the gradient of 
the bulk temperature (dTb/dz) for the specified thermal 
boundary conditions. In addition, (dTb/dz) is related to the 
boundary heat flux qw, and the mass flow rate through the 
channel, by the steady flow energy equation. Fluid properties 
can be evaluated at the bulk temperature of the fluid. 

To obtain a solution, a reference temperature value is chosen 
arbitrarily, and all other temperatures, both in the fluid and the 
cladding, are determined relative to this value. The mean fluid 
temperature T is calculated from the fluid temperature 
distribution using a numerical approximation to the equation 

~ TfdA (3) 
~dA 

The local heat transfer coefficient h can then be calculated in 
the usual way from the difference between the wall temperature 
at a particular angular position and the mean temperature of the 
fluid, using the expression 

h = qw/(Tw - T) (4) 

Here qw is the local heat transfer to the fluid--see Appendix 1. 

Results 

Temperature fields in fluid and cladding 

Computer predictions of the fluid velocity and temperature 
fields have been obtained for a four-cusp channel made up of 
9.5 mm diameter fuel rods swollen to 12.6 mm diameter. These 
dimensions were chosen to correspond to current PWR 
designs 6. For  the results presented in this paper, superheated 
steam at 200°C and 3 bar has been considered as the coolant, 
corresponding to the critical period before rewetting of the 
cladding after the LOCA. Coupled with these fluid conditions, 
the temperature distribution in a segment of the cladding (OA) 
has been determined numerically for different assumed values of 
the cladding thickness, and Reynolds number. The results are 
presented in graphical form in Figs 4 to 9. 

Fig 4 shows the temperature profile along the cladding for 
fixed values of the Reynolds number and thermal conductivity, 
but with varying thicknesses of the cladding. As expected, 
thinning of the cladding, such as would probably occur during 
the clad ballooning process in a LOCA, increases the 
temperature variation along the wall section. 

The predicted temperature values in the duct, based upon 
what is clearly an idealized situation, have been obtained 
without any allowance for changes in the fluid properties. The 
calculations yield isotherms which are geometrically similar to 
the isovels. For  the conditions specified in Table 1, a maximum 
temperature difference of 2400°C below the arbitrary reference 
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Figure 4 Peripheral variation of temperature in cladding-- 
influence of discretization errors, kw = 19 W/(m K), q i= l  8 kW/m 2, 
Re = 103 

Table  I Data used as basis for calculations 6 

(i) Fuel rod surface heat flux (average) 600 kW/m 2 
Decay heat during LOCA (used in 

calculation) 18 kW/m 2 

(ii) Fuel rod dimensions: swollen outer 
diameter 12.6 mm 
cladding thickness 0.57 mm 

(iii) Zircalloy cladding: conductivity k w 19 W/(m K) 

(iv) Steam conditions: specific heat Cp 1.94 kJ/(kg K) 
dynamic viscosity #f 16.2 x 10-6 kg/(m s) 

conductivity kf 33.2 x 10 - 3  W/(m K) 

level (at the cusp) is calculated at the centre of the duct (point B). 
This is obviously unrealistic and reflects the arbitrary choice of 
parameters in which a high heat input, corresponding to 3 ~o of 
the design power level, has been assumed. The actual 
temperature at any axial station may then be obtained by 
superposition, combining the computed temperatures (relative 
to the cusp) with the axial gradient of the bulk temperature 
(dTb/dz) and the chosen location z--see Eq (1). 

The maximum value of the temperature difference around the 
cladding is of immediate interest in safety studies. This value has 
been plotted in Fig 5 corresponding to the conditions specified 
in Table 1 except for the cladding thickness, which has been 
varied systematically. The results confirm the expected trends of 
increasing temperature difference as the cladding thickness 
decreases. Perhaps it should also be observed that experimental 
study 7 of the flow in a four-cusped channel has suggested 
transition Reynolds numbers lying between 1800 and 2000. 
Thus, the Reynolds number values considered in the present 
numerical study (of order 1000) are appropriate to the assumed 
laminar flow conditions. 

Although there are other obvious parameters, such as the wall 
conductivity kw, controlling the temperature variation in the 
cladding, in the context of PWR design the thermal conductivity 
value taken here is the most realistic, since Zircalloy is currently 
the preferred cladding material in all PWR designs. It is then 
apparent that the most significant influence on the wall 
temperature variations will be the decrease in cladding thickness 
as the ballooning process proceeds. 

The ve loc i t y  f ie ld 

This study has been primarily concerned with heat transfer 
aspects of the PWR blockage problem, even though these 
cannot be determined without initially solving for the fluid 
velocity field. As part of the computer program, therefore, the 
friction factor was determined from the specified axial pressure 
gradient and the average velocity for the section (yielded by the 
computer solution). Furthermore, since laminar flow was 
studied, the local shear stress on the cladding could be estimated 
from the velocity gradient normal to the wall, and the absolute 
viscosity. This enabled a check to be made to ensure 
compatibility between the predicted friction factor and the 
measured correlation 8. 

Fig 6 shows the velocity field within the four-cusp channel in 
terms of the contours of constant velocity level. Note that these 
values were computed for a specified pressure gradient. The 
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velocity variation along the lines OB and OA is then shown as 
Fig 7. Subsequently, the velocity field yields the distribution of 
the wall shear stress z, ,  rendered dimensionless by the mean 
value ~,, as presented in Fig 8. Figs 6, 7 and 8 reflect the way in 
which the cusped wall junction produces a substantial region of 
low energy fluid in the corners. 

In some experiments to determine the dependence of the 
friction factor on the Reynolds number for a four-cusped 
channel, Haque s found that 

f = 6.5/Re (5) 

This value should be contrasted with the computed result 
obtained here using a numerical approximation to the 
expression for the average shear stress along the cladding 
surface, 

j a n  14 

{w = rw d0/(n/4) (6) 
O 

Converting this into a friction factor yields a result for the 
product f R e =  6.62. This satisfactory agreement is reassuring. 

Heat transfer to the f lu id  

The heat transfer coefficient defined by Eq (4) is easily calculated 
from the temperature variations in the fluid. Then the local heat 
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shear stress ~w=l~(au/dr)w obtained by integration around surface 
(Eq (6)) 

7 .0  

6 .0  

5.0 

2.0 

I.O 

O.0 t 
0.0 0.2 0.4 0.6 0.8 I .0 

Fractional distance along cladding (OA) 

Figure 9 Peripheral variation of Nusselt number (NB: independent 
of Reynolds number) 

4 .0  o) J:3 
E 
E 

~- 3.0 

Z 

T a b l e  2 Mean Nusselt number as a function of cladding 
thickness, based on 21 × 21 results 

Wall thickness t 0.15 0.40 0.80 
(ram) 

Mean Nusselt 2.185 2.180 2.172 
number/~u 

transfer coefficient h can be integrated around the cladding 
surface to determine the average coefficient h using a numerical 
approximation to the expression 

/~= _(f/4 h d0/(n/4) (7) 

Thus the local and mean values of the Nusselt number can be 
determined, leading to the results which are summarized in Fig 9 
and Table 2. It is interesting to observe that changing the 
thickness t of the cladding produces less than one percent 
variation in the local Nusselt number, as represented by the 
curve in Fig 9. Similarly, the surface-averaged Nusselt number 
Nu changes only very slightly when the cladding thickness is 
altered from 0.8 mm to 0.15 mm. Such changes are insignificant 
in view of the other major assumptions in the a_nalysis. 

Following normal practice, it is likely that the Nu value could 
be assumed to apply for different boundary conditions at the 
surface (eg variable heat flux in the azimuthal direction). 
Although no empirical data appear to be available for a four 
cusped channel, Shah and London 3 have presented a table of 
heat transfer data for other noncircular ducts. The computed 
values obtained here are in broad agreement with these data and 
are independent of the Reynolds number assumed, because of 
the way in which the problem is posed. 

More realist ic mode l l i ng  

In the event of a LOCA, distortion of the fuel elements by 
ballooning would produce a space between the fuel pellets and 
the cladding. In turn, this would lead to variable heat flux (by 
radiation) at the inner surface of the cladding and 
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circumferential variations in the thickness of the cladding. Such 
additional complications could easily be included in the 
numerical scheme by introducing an angular dependence for the 
terms qi and t as explained in Appendix 1. 

Current thinking appears to couple the four-cusped channel 
shape with decreasing cross-sectional area along the flow 
direction. Hence, the real problem becomes one of accelerating 
flow through the subchannei, with variable heat flux into the 
cladding. These modifications, which must influence the 
velocity and temperature fields in the fluid, and the temperature 
distribution around the cladding, are currently receiving 
attention. 

Conclusion 

A numerical procedure has been described which enables the 
temperature attained by swollen PWR fuel rod cladding to be 
determined. The problem solved is that of conjugate conduction 
through the cladding, coupled with laminar convection into the 
fluid; a four-cusp cross-sectional shape is assumed for the flow 
channel. Constant heat flux at the fuel-cladding interface, 
laminar flow conditions, and fully developed but uncoupled 
velocity and temperature fields are assumed in formulating the 
problem. Only small changes to the computational procedures 
would be needed to accommodate variable heat flux from the 
fuel to the cladding. The method could be extended to other 
geometries with relative ease. 

Results have been presented for the temperature variation in 
the cladding, the heat transfer coefficient, the fluid velocity and 
temperature fields, and the surface shear stress distribution. 
Excellent agreement is found between the computed values for 
the friction factor and the mean Nusselt number, and the limited 
data available in the literature. 
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Appendix 1: Thermal conduction in the fuel 
rod cladding 

The model for the thermal conduction in the cladding material is 
shown in Fig 10. Unidirectional heat conduction is assumed, 
following the practice adopted in fin theory. Although the 
analysis applies to cladding with circumferentially varying 
thickness, it can be simplified for the case presented in this 
paper. 

An energy balance for the element of the cladding results in 

1-- q i = - k w t ~ x 2 - k w ~ x  ~x-l-qw (8) 

provided that axial heat conduction is ignored. 
Thus, for the particular case where the cladding is of constant 

thickness 

- k w t  ~x2 +qw 

and 

qw = \ Or Jw (9) 

This equation must be satisfied simultaneously with the 
energy equation for the fluid. For  this purpose, the equation is 
written in finite difference form and solved together with the 
convection equations discussed in Appendix 2. The fuel- 
cladding interface heat flux qi needs to match the specified axial 
temperature gradient in the fluid. For  the assumed fully 
developed temperature conditions, this temperature gradient 
will be constant. This latter constraint is enforced once the 
velocity field and, hence, mass flowrate have been obtained for 
the specified axial pressure gradient. An overall energy balance 
for the cladding-fluid control volume relates the heat flux q to 
the axial enthalpy increase of the fluid. 

The peripheral temperature gradients in the cladding at O 
and A are zero because of symmetry; these conditions are 
accommodated in the usual way in the numerical method. In 
practice, Eq (9) could be developed further to cater for two- 
dimensionality. However, since the thickness of the cladding is 
small compared with its radius, these effects are relatively 
insignificant. 

Appendix 2: Analysis of laminar f low 
distribution and heat transfer by forced 
convection 

The momentum and energy equations for fully developed steady 
laminar flow in the channel may be written in a generalized 

j ,  Fn e;/?o,cOe  'o0 

;i! C 0 n d u c t i o n :i;i;i;; ;i!;i;!~;;;i!i!i!~!;! 

- I -  - I  F l u i d  / c l o d d i n g  
i n t e r f a c e  

Figure I0  Element of cladding and basis of conjugate heat transfer 
calculations 
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Table 3 Meanings of quantities in Eq 
(10) 

b .  d .  (source) 

10p 
u 1 

,u Oz 

uOT 
T 1 

ot Oz 

form, following Gosman et al 1, as 

0 [r ~ \  0 [1 b OffJ\ 

Here, the various quantities have the meanings listed in Table 
3. 

The boundary conditions for the velocity and temperature are 
briefly discussed in the second section of the paper, particular 
attention being given to the attainment of symmetry along the 
cusp bisector OB. Along the cladding-fluid interface, the 
velocity is everywhere zero while the temperature there is made 
compatible with the heat conduction in the cladding (see 
Appendix 1). 

Noting that laminar flow is assumed, the axial pressure 
gradient (Op/Oz) has to be chosen accordingly. An estimate of 
this quantity is made using the appropriate relationship for 
frictional pressure drop in laminar flow given in Turner and 
Haque (1983); thus the velocity level can be determined. Further 
integration yields the mean velocity and permits the Reynolds 
number to be evaluated. 

A p p e n d i x  3: S y s t e m  of  coord ina tes  

As noted in the second section of the paper, an early approach to 
both the flow and heat transfer patterns involved the use of polar 
coordinates r(, 0), but this proved unreliable. Instead, an 
approach involving nonorthogonal coordinates (for full details 
see Duck s ) was adopted. In this paper, details will only be given 
for the flow problem; the technique used to determine the heat 
transfer solution is virtually identical. 

A scaled radial coordinate ~ is used, as defined by Eq (2), 
whilst the angular coordinate 0 is left unchanged. It is also found 
convenient to work with a scaled velocity field U(~, 0), defined 
by 

u = U(~, o)n(o) (11) 

Substitution of this into the fully developed momentum 
equation (10) yields the following partial differential equation 

for U: 

[ ~ q . H ~ 2 s ' 2 - ] O 2 U [ - H  l [ 2 ~ s ' 2 H  
s2(1 +s~)2J d ~ - - + ~ + ~  - 

s - ~ -  

H" 2H' 0U H 02U 
+ ~ U + ( I + s ~ ) ~  O0 bO+s~)2 O0 2 

2~s'H 02U _a 2 Op (12) 
s(l+s~) 20rdO ~ Oz 

There is now a rectangular grid on which to compute, and so the 
boundary conditions may be enforced rather more easily. Along 
the boundary ~ = 0, there is the condition of no slip, namely 

U(0,0)=0, O<<.O<~n/4 (13) 

On two of the other edges of the computational domain, 
symmetry must be imposed. This requires that 

H OU ^ s i n 0 /  s'H OU'X 
- cosV+~-~ss~H oU~+ H'U s o~ ~ S~/=°/ (14) 

7~ 0<0<~ on ~=1, 

together with 

OU ~s'H OU 
n t H - ~ - +  U s 0~ = 0  (15) 

on O=n/4, for 0~<~<1 

Before specifying the boundary condition on the fourth edge 
of the domain, the scaling factor H must first be specified. 
Following Duck s , this was taken to be 

n=s2(O) (16) 

The choices of H and s(O) reflect the local behaviour of the 
solution close to a cusp, as detailed in Ref 5. With this, the fourth 
boundary condition becomes 

U = ½~2 _ ? (17) 

for 0=0,  0~<~< 1 

This completes the solution for the axial fluid velocity. In the 
case of the heat transfer problem, the primary difference in the 
approach was that H was taken to be unity (to reflect the local 
behaviour of the temperature close to the cusp), and the 
boundary condition on the temperature on this fourth edge was 
taken to be 

T=constant  (=0,  say) (18) 

for 0=0,  0~<~<1 
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